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Energy Transfer as a Random Walk 
with Long-Range Steps 

A. B l u m e n  I and G. Z u m o f e n  ~ 

We consider the incoherent energy transport in molecular crystals, where the 
transfer rates stem from Coulombic and exchange interactions. For substitution- 
ally disordered lattices we present in a first passage model the excitation decay 
due to trapping by randomly distributed traps; the decay is related to the 
distribution of the number of distinct sites visited during the time t and is 
expressible through the cumulants of this distribution. The validity domains of 
approximate decay laws based on the first few cumulants are also discussed. We 
exemplify the findings for dipolar transfer rates between randomly distributed 
molecules on a square lattice, by comparing the random walk on the random 
system to its CTRW (continuous time random walk) counterpart. 

KEY WORDS: Energy trapping; cumulant expansion; continuous time 
random walk; CTRW; random lattices; long-range steps. 

1. INTRODUCTION 

From the various applications of the theory of random walks in solid-state 
physics and chemistry we focus in this paper on the incoherent energy 
transfer in ordered and disordered crystals. Here the excitation trapping by 
randomly distributed impurities is particularly revealing, since the trapping 
determines the time dependence of the luminescence and is therefore 
directly amenable to experimental observation. 

A major feature of the microscopic energy transfer mechanisms is that 
they are due to Coulombic and to exchange interactions; for these the 
probabilities of steps to molecules which are not nearest neighbors are 
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significant. Setting w(r) for the probability of performing a step r one has 

w(r) ~ r - '  (1) 

for multipolar and 

w (r) cc e -  vr (2) 

for exchange interactions. (1,2) The constants s and 7 denote the interaction 
type and range (e.g., s = 6 for dipolar, s = 10 for quadrupolar interactions). 

Apart from having to account for tong-range steps, the study of energy 
transfer is quite complex due to the microscopic disorder, which depends 
on the different types of molecules involved and on the geometrical 
constraints. Here we consider substitutionally disordered crystals. In the 
special case of a binary crystal, with two molecular components (traps and 
active, i.e., energy transferring, molecules) the energy decay could be 
viewed as a random walk on a regular lattice, followed by trapping. On the 
other hand already a ternary crystal with three components (traps plus 
active and inert molecules) leads to the problem of random walks on 
random lattices, which is a major theoretical endeavor. We start by consid- 
ering the two-component case. 

2. TRAPPING IN BINARY CRYSTALS 

In the models considered here the traps are distributed randomly on 
the regular lattice and they occupy the lattice sites with probability p. We 
assume that the microscopic rates do not depend on the nature of the site 
to which a transfer takes place, i.e., whether the site is a trap or not. 
Furthermore, the excitation is to be quenched instantaneously at the first 
encounter of a trap. 

For a particular realization of the random walk on the perfect (trap- 
free) lattice, we let R n denote the number of distinct sites visited in n steps. 
For the same realization of the walk we let Fn denote the probability (over 
the ensemble of lattices doped with traps) that trapping has not occurred 
up to the nth step. The quantities R, and F, are stochastic variables related 
through 

F .  = ( ]  - (3 )  

where it is assumed that the origin of the walk is not a trap (see the 
discussion in Ref. 3). The measurable survival probability ~5(t) at time t is 
then the average of Eq. (3) with respect to all possible realizations of the 
random walk in space and time: 

�9 (t) = ( ( F n ) )  = ~__0((1 -p)R"-l)q~.(t) (4) 
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Here qsn(t ) is the probability of having performed exactly n steps in time 
t.(4,5) Under our assumptions for the binary crystal the transfer rates from 
each active site are ~';- 1 = ~,rW(r), independent of the particular site consid- 
ered. This leads to an exponential probability q'(t) not to have left the site: 

"t'( t) = exp[ - t X.~r 'W(r) ] (5) 

and to an exponential stepping time distribution ~(t) -- - d q ' ( t ) / d t :  

~,(t) = T 1- 'e - '/~' (6) 

from which it follows that the q>,(t) are Poisson distributed. (4'5) 
By setting )t = - ln(1 - p )  the spatial average on the right-hand side of 

Eq. (4), 

6/, =-- ( r . )  = ((1 _ p ) n . - 1 )  = e)(e-XR.) (7) 

can be rewritten as a cumulant expansion(3's'6~: 

q)~ = eXexp .= J/j! (8) 

Here the ~j,n are the cumulants of the distribution of R~, e.g., x~,~ = (R~) 
- -  2 being the mean and = S n and x2, n ---= (R~) - (Rn) 2 = 02, with S n and o n 
the variance. 

In general the distribution of Rn is not known in great detail, so that 
one has to restrict Eq. (8) to the first N cumulants: 

q?N,,, -~ eXexp .=lxJ'"(--)t)J/J ! (9) 

The form with N = 1 then leads to the Rosenstock approximation, (7) 
~l,n = exp[-•(S,  - 1)], whereas N = 2 gives q52, . = dPl,nexp(X2o2/2), which 
is akin to an expression advanced by Weiss. (8) 

The advantage of these simpler, approximate forms is that much 
information about S, and o, 2 may be obtained through analytical methods. 
We have discussed these aspects for several three-, two-, and one-dimen- 
sional lattices in Refs. 3, 6, and 9, where we have also analyzed the effect of 
long-range steps. In brief, the numerical evaluation of the distribution of R, 
and the comparison of the approximate forms, Eq. (9), with the exact decay 
form, Eq. (8), show that the Rosenstock approximation works fairly well in 
three dimensions, for low concentrations of traps, and for times which are 
not too long. The inclusion of the variance leads to forms which are very 
good in three dimensions, but whose quality gets poorer for lower dimen- 
sions: in two dimensions (1)1, n is not a good approximation i fp  is not very 
small, whereas q52, n is in many cases still acceptable. For a linear chain both 
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forms are inappropriate even for trap concentrations as low as 1% (see Fig. 
1 of Ref. 6). In Refs. 3 and 9 we have also used the analytical expres- 
sions (10,11~ for Sn and o~ to check the accuracy of our numerical results and 
to establish asymptotic formulas which obtain for different transfer laws, as 
given by Eqs. (1) and (2). The conclusion is that, apart from singular cases 
like a nearest-neighbor random walk in one dimension, (4'6~ one is still far 
from determining the decay law ~n in closed form for general interactions 
and lattice structures. Accurate results, however, may be obtained from 
numerical simulation, which turns out to be an efficient, versatile tool. 

3. TRAPPING IN TERNARY CRYSTALS 

As mentioned in the Introduction, trapping in systems composed of 
active and inert molecules involves random walks on random lattices. From 
the approximating schemes employed to deal with this problem, the contin- 
uous time random walk (10.12,13) (CTRW) is particularly appealing, since it 
preserves the migration aspect; in a somewhat simplified form (x3) it lets the 
migration take place on a regular lattice, while the randomness of distinct 
site environments is accounted for through a random distribution of 
stepping times ~(t). We thus first consider the trapping law in the CTRW 
context and present afterwards the numerically simulated decays. 

In our substitutionally disordered crystal we let/7 be the probability 
that a site is occupied by a molecule to which the energy can be trans- 
ferred; 1 - / 7  is the probability of finding an inert molecule. If the lattice 
sites are occupied in a random, uncorrelated way by the different molecular 
species, then the probability of not having left a particular site is 

~(t) = exp[- t ~l ~(r)w(r) ] (10) 

where the ~(r) are random variables, which take only the values 1 and 0 
with probability/7 and 1 -/7. The configurational average of Eq. (10) is, 
exactly (see Ref. 14 for other derivations), 

, I s ( t ) -  <'~(t)>(~(,)) = I-I 1 <exp[ - t~(r)w(r)] )~(r ) 

= H ' [ ( I - - / 7 )  4 =/Te -tw(r)] (II) 
F 

An approximation to this exact form obtains by disregarding the lattice 
structure, assuming the concentration/TP of active molecules to be small (14) 
(continuum approximation): 

q(t)=exp(-/Tof {1-exp[-tw(r)]}dr) (12) 

Equation (12) has been used--and derived--frequently in many fields; 
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typical forms for Eqs. (11) and (12) for particular microscopic interactions 
and underlying lattices are given in Refs. 14-16, together with an analysis 
of the validity domains of Eq. (12). For multipolar interactions given by 
Eq. (1), one obtains (14) from Eq. (12) 

~t'm(t ) = exp( -- At 6/s) (13) 

where A is the dimensionality of the lattice considered, and A is time 
independent. For transfer due to exchange one finds (14) 

~x(t) = exp[ - Bg~(Ct)] (14) 

where B and C do not depend on time and g~(x) is an analytical function 
of x, see the appendix of Ref. 14. 

Under the assumptions mentioned above, one can use Eqs. (13) and 
(14) to determine, via ~(t) = -d~t ' ( t ) /dt ,  the corresponding stepping-time 
distribution functions: 

~m(t) = AA t(A/s) -'exp( - At ~/~) (15) 
S 

and 

~x(t) = ~ g6_,(Ct)exp[- BgA(Ct) ] (16) 

We remark that the trapping law for the CTRW is again given by Eq. (4); 
the probabilities q~n(t) of having performed in time t exactly n steps being 
related to ~(t) through 

~,,(u) =[ ~(u) ]"[1 - ~(u) ]/u (17) 

where we let f(u) denote the Laplace transform of f(t), f(u) -- J [f(t)]. It 
should, however, be clear that the forms Eqs. (13) to (16) are valid only for 
low concentrations of active molecules, (14 16) i.e., in highly disordered 
situations. This runs counter to the CTRW assumption of letting the 
random walk take place on a regular lattice. We tend thus not to put much 
weight on the a priori determination of the model from the physically 
underlying structure, but to view the CTRW simply as a mathematical tool, 
to be used for approximating purposes. 

The decay law, Eq. (4), may be put in a convenient form by introduc- 
ing the function pn(x), the probability density of the distribution Rn : 

oo 

O(t) = e x • Fdxe-X~O,(X)~,(t)=eXfdxe-X~U(x;t ) (18) 
n = 0  . j  

Here we set 

~(x; t) =-- ~ p,(x)O,(t) (19) 
n = 0  
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and f~(x; t) gives now the probability for having visited exactly x distinct 
sites during the time t. We remark that the right-hand side of Eq. (18) is 
very general. Using the cumulants Yj(t) of the distribution f~(x;t) we 
express the decay law as 

j=l J! Yj(t) (20) 

Evidently, Eq. (8) is the special case of Eq. (20) for a constant stepping 
frequency. In the following we use Eqs. (18) and (20) to analyze the energy 
decay laws both for the CTRW model and for the direct simulation of 
random walks on random lattices. 

4, NUMERICAL RESULTS 

According to Eqs. (18) and (20), the knowledge of the distribution 
~2(x; t) completely determines the decay law ~5(t) for the first passage 
model. Therefore, we determine through numerical simulation f~(x; t) and 
calculate from it both the exact decay law, Eq. (18), and approximate 
forms, obtained by restricting the sum in Eq. (20) to the first N terms: 

e exp[  ] j=l  j ~  Yj(t) (21) 

Since we have already presented in Refs. 3, 6, and 17 the decay laws which 
obtain for walks with fixed stepping frequency on regular lattices, we focus 
here on the CTRW model and on random lattices. For reasons of compari- 
son we take in both cases the same underlying lattice, a square lattice, and 
the same, dipolar, interaction. Other cases will be considered elsewhere. (5) 

For the CTRW model the stepping time distribution if(t) is taken to be 
given by Eq. (15), with A = 2 and s = 6; in the CTRW-spirit the displace- 
ments of the walk are nearest-neighbor steps on the regular lattice. We 
simulated 2000 walks, by determining the step directions as well as the 
stepping times through a random number generator (RN1 of the ETH- 
Rechenzentrum). The time is parametrized in units of the average stepping 
time 

"c] =--- foo~ ~( t) dt 

The decay laws for the (relatively high) trap concentrations p = 0.1 
and p = 0.5 are plotted in Fig. 1, together with their approximate forms 
q51(t ) and q52(t ). Evidently, here none of the two forms is even qualitatively 
correct. We emphasize, however, that for p < 0.01, g/,2(t) turns out to be a 
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Fig. 1. Decay law due to trapping for a C T R W  on a square lattice for the dipolar stepping 
time density, Eq. (15), with s = 6, A = 2. The full line q) denotes the exact decay whereas (I) N 
are approximate forms, Eq. (21). The probabilities that a site is a trap a r e p  = 0.1 a n d p  = 0.5. 
The vertical bar marks the s tandard deviation between simulated and smoothed results. 

very good approximation (5) for the decay range 1 < (I)(t) < 10 - 4  plotted. 
The exact decay (I)(t) is nonexponential, mainly due to the wide x distribu- 
tion of the f~(x; t) values, compared to which the effect of the nonlinearity 
of S(t) with t is almost insignificant. 

The random lattice considered was constructed by placing molecules 
on a square lattice, with a probability/7 = 0.1 for having a site occupied by 
an active molecule. We started from a 114 • 114 grid, so that we had 1300 
active molecules inside this unit, which was then periodically repeated. The 
cutoff of the dipolar interaction was chosen so that each molecule could 
transfer its energy to typically 400 neighboring molecules. On this system 
350 walks were performed. The results for (I)(t), q)l(t), and (b2(t) are plotted 
in Fig. 2, for trap concentrations of p = 0.01 and p = 0.05, i.e., p/fi= 0.I 
and 0.5; this should parallel the CTRW model of Fig. 1. As is evident, the 
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Fig. 2. Decay law due to trapping for random walks on a random lattice (built on a square 
lattice with occupancy )~ = 0.1). The relative probabilities that an active site is a trap are 
p/~ = 0.1 and p/~= 0.5. The steps follow the dipolar interactions. The symbols are as in 
Fig. 1. 

qualitative behavior of the decay laws is similar, and the approximations 
fail in the same way. Quantitatively, however, the decay laws do not agree: 
They cannot be even brought into agreement by a change in the mean 
stepping time ~-~, since for p = 0.5 the C T R W  decay law lies above its 
corresponding one for the random lattice, whereas for p = 0.1 the situation 
is just the opposite. A detailed analysis indicates that both shortcomings 
may be traced to the behavior of the stepping time distribution qJ(t), Eq, 
(15). Furthermore, we note that, compared to the more pathological forms 
in use for exchange interactions, the g,(t) for the dipolar case is extremely 
well behaved. All this supports our viewing the C T R W  approach as an 
approximate, qualitative tool. 

To summarize our findings, we have shown that numerical analyses 
supplement nicely the analytical results in the theory of random walks since 
numerically one obtains the complete distribution of distinct sites visited. 
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This method is particularly adequate in complex cases like CTRW and for 
random walks on random lattices. For the first-passage decay model 
cumulant expressions represent a canonical expansion in terms of the 
distribution of distinct sites visited. 
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